What’s going wrong?
システマティックレビューやメタアナリシスにおいて,複数のコホート試験や無作為化比較試験のデータを統合したり累積メタアナリシスを行うなどしてより精度の高い解析を行います.しかしながらそこには出版バイアスという偏りを避ける事はできません.陰性の結果の出た試験,無効の結果の出た試験などは投稿されにくく,採用されにくい傾向があるためです.仮に出版バイアスのかかった論文ばかりでシステマティックレビューやメタアナリシスが行われた場合,誤った治療法が選択される危険性が高まります.funnel plot はそのような出版バイアスを確認するための方法です. 横軸にオッズ比や相対危険度,ハザード比などを取り,縦軸には標準誤差の逆数を取ってプロットします.標準誤差はサンプルサイズに依存するため,サンプルサイズが大きいほど標準誤差は小さくなり,従ってその逆数は大きくなります.複数の試験を funnel plot にプロットすると,理想的な状態では漏斗をひっくり返したような左右対称の形になります.しかし出版バイアスが存在する場合はいずれか片方がすっぽり抜け落ちた形になります. ファンネルプロットを描くには標準誤差を求める必要がありますが,効果量の点推定値およびその 95 % 信頼区間が分かっている場合,大抵のシステマティックレビューやメタアナリシスには掲載されているものですが,下記の計算で標準誤差を求めることができます.ES: effect size, SE: standard error, 95%CI: 95 % confidence interval, 95%LL: 95 % Lower Limit, 95%UL: 95 % Upper LimitMatthias Egger, George Davey Smith, Martin Schneider, Christoph Minder ファンネルプロットはサンプルサイズに対する効果の推定値をプロットしたものであり,大規模試験により後ほど矛盾を示すメタアナリシスにおけるバイアスを検出するのに有用かもしれない.我々はメタアナリシスを大規模試験と比較した際に結果の不一致をファンネルプロットの非対称性が予測するか否か試験し,出版されたメタアナリシスのバイアスの有病率を評価した. メタアナリシスと単施設大規模試験のペアを同定するため Medline 検索(結果の一致は効果が同じ方向を向いており,メタアナリシスの推定値が試験の 30 % 未満であると仮定している). 1993 年から 1996 年までの 4 つの主要な一般的な医学雑誌から手動で検索した中から抽出した 37 のメタアナリシスと,1996 年二回目に発行された Cochrane Database of Systematic Reviews から抽出した 38 のメタアナリシス. 同定された 8 対のメタアナリシスと大規模試験において(5 対は心血管医療から抽出され 1 対は糖尿病医療から,1 対は老人医療から,1 対は周産期医療から)4 対は一致し,4 対は一致しなかった.不一致のケースは皆,より大規模な試験で証明されたメタアナリシスだった.ファンネルプロットの非対称性は不一致の 4 対のうちの 3 対に出現していたが,一致していた対には全く出現しなかった.14 雑誌 (38 %) のメタアナリシスと 5 雑誌 (13 %) のコクランレビューにおいてファンネルプロットの非対称性はバイアスが存在することを示唆していた. ファンネルプロットという簡便な解析により,メタアナリシスにおけるバイアスが存在するらしいことの有用なテストをもたらす.しかし検出許容はメタアナリシスが小規模試験の限定された数に基づく時に限られ,その結果は注意深く取り扱うべきである. システマティックレビューは医療介入のリスクとベネフィットにおける最も有用なエビデンスであり,臨床研究と公衆衛生における意思決定を通知するものである.そのようなレビューは可能ならいつでもメタアナリシスに基づくべきである.『解析者によって考慮されたいくつかの独立した臨床試験を結合するか統合した統計解析は,結合可能であるべきだ』と.しかしながら,いくつかのメタアナリシスの所見は後により大規模な無作為化比較試験によって矛盾が明らかになるものである.そのような不一致は技術を広く傷つけて,最初から論争の的になってきた.メタアナリシスがミスリーディングしているように見えるのは出版バイアスや多くの他のバイアスの存在を考えれば驚くことではなく,ロケーションや選択,研究の結合により導入されるのかも知れない. ファンネルプロットはサンプルサイズに対する試験の効果推定値をプロットしたものであり,メタアナリシスの検証を評価するのに有用かもしれない.そのファンネルプロットというのは以下の事実に基づいている.基礎治療効果の推定における精度は,要素となる研究のサンプルサイズが増えるに従い増加する.小規模試験の結果はグラフの底辺に広く分布し,試験がより大規模になるほど狭くなる.バイアスの存在しない状態では分布は左右対称の逆さまの漏斗に似た形をする筈である.逆に,もしバイアスが存在するならファンネルプロットは歪み,非対称になる筈である. ファンネルプロットの価値はこれまで系統的に検証されたことがなく,対称性(または非対称性)は通常,主に視覚的な検査によって非公式に定義されただけであった.当然ながら,ファンネルプロットは観察者によって異なって解釈されてきた.我々はファンネルプロットの非対称性を数値的に計測し,同じテーマを扱ったメタアナリシスと大規模試験を比較した時,その非対称性が結果の不一致を予測するかどうかを試験した.我々はファンネルプロットの非対称性の有病率,つまりバイアスの存在を評価するために同じ方法を用いた.主要な一般医学雑誌で出版されたメタアナリシスと,Cochrane 共同計画で電子的に普及しているメタアナリシスを用いた. 我々は線形回帰法を用いてファンネルプロットの非対称を計測し,オッズ比の自然対数スケールを用いた.現在の状況では回帰直線が原点を通るという制約を課されないにも関わらず,これは Galbraith の放射状プロットの回帰分析に対応している.標準正規偏差はオッズ比をそれ自身の標準誤差で除したと定義されるが,推定精度に対して回帰し,後者は標準誤差の逆数として定義される(回帰式は次のように定義される:SND = a + b x precision).精度が主にサンプルサイズに依存するように,小規模試験は x 軸上では 0 に近づく.小規模試験はオッズ比の統一値からの差異を提供するが,標準誤差が大きくなるために結果として標準正規偏差は 0 点に近くなる.小規模試験は両軸共に 0 点,つまり原点に近づく筈である.逆に大規模試験は正確な推定値をもたらし,もし治療が有効なら大きな標準正規偏差をもたらす.試験の集合が同質ならその点は選択バイアスによって歪まず,標準正規偏差がゼロとなる (a = 0) 原点を通る直線上に分布するはずであり,傾き b は効果のサイズと方向を示している.この状況は左右対称のファンネルプロットに対応する. 仮に非対称が存在する場合,系統的大規模試験の結果とは異なる結果が小規模試験で出るように,回帰直線は原点を通らない筈である.切片 a は非対称性の計測を提供する.ゼロからの偏差が大きいほど非対称がより顕著となる.小規模試験がより大きく強固な効果を有するなら,対数軸の原点より下に回帰直線が来るようになるはずである.それ故,陰性の結果は小規模試験においては大規模試験よりもより顕著な利益を示唆するはずである.ある状況では(例えばいくつかの小規模試験と1つの大規模試験が存在するような場合),推定効果の分散の逆数により解析に加重することによって検出力が上昇する.我々は加重した場合としない場合の両者について検討し,解析の結果を用いてより 0 からの偏差が大きな切片を求めた. 異質性のすべての検査とは対照的に,ファンネルプロットの非対称性テストは異質性を特異的に評価し,この状況ではより強力なテストを提供する.しかしながら,どんな異質性の解析もメタアナリシスに含まれる試験の数に依存しており,それらは一般に小規模で,試験の統計学的検出力に限界がある.それ故我々は非対称性の根拠を P The function viz_forest creates visually appealing and informative-rich forest plots using ggplot2. From here, it would be pretty easy to amend the above code to add any number of additional features.
Description. When I deleted it, the code worked but I couldn’t get the summary section.Fill in your details below or click an icon to log in:7. Funnel plot asymmetry, measured by regression analyses, predicts discordance of results when meta-analyses are compared with single large trials Funnel plot asymmetry was found in 38% of meta-analyses published in leading general medicine journals and in 13% of reviews from Cochrane Database of Systematic Reviews Publication bias e Funnel Plot • gli studi negativi, soprattutto se di piccole dimensioni, tendono ad essere meno pubblicati. I’ve reused the funnel plot code really recently and had no troubles.Please see my replies. These functions, respectively, return the following plots:Not bad, but by no means would I call the plots created by these quick functions “pretty”. And in the case of the funnel plot, things get out of hand pretty quickly if you have many effect sizes (see below for one from a meta-analysis of my own with >200 effect sizes).